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Abstract 

This paper discusses the use of conjugate gradient algorithm and Modified Newton’s method employed to 

determine the Solution of equality constrained optimization problems. The conjugate gradient algorithm was used 

as a scaling factor with the purpose of making the initial guess to be closer to the optimal solution, after which the 

Newton’s method was introduced to guide against jumping the optimal points and ill-conditioning of the 

problems along the search path. A Lagrange multiplier Vector updating scheme at each one-dimensional search 

is considered. It was proved using some tested problems that the rate of convergence of the method is linear and 

lesser number of iterations will be generated if one starts with sufficiently small penalty factor. 

Keywords: Conjugate Gradient Algorithm, Modified Newton’s Method, Multiplier Method, Numerical Solution, 

Optimization Problems. 

 

1. Introduction 

We studied a class of methods for solving constrained optimization problems which are based on 

quadratic Augmented Lagrangian for which the penalty parameters are functions of multipliers [1]. 

This gives rise to Lagrangian which are Nonlinear in the multipliers. We equally studied some method 

for unconstrained multivariate problems such as conjugate gradient algorithm and the Modified 

Newton’s methods. The conjugate gradient algorithm considered the steepest direction and an updated 

search direction while the Modified Newton’s method considered the inverse Hessian matrix of the 

function under consideration [2]. 

For unconstrained problems, the two methods are very suitable, though the conjugate gradient method 

is preferred because it converges faster than the Newton’s method. If a problem is subject to one or 

more constraints, experience reveals that the iterates of conjugate gradient algorithm may move away 

from the feasible region in its quest to locate an optimal path in short time, thereby repeating the same 

path before locating a local optimal point. This action of the algorithm waste computer time, which is 

not a characteristic of a good algorithm [3]. On the other hand, the Modified Newton’s method moves 

slowly in search for global minimum thereby generate more iteration [4]. In order to balance the two 

sides, the two methods are combined and applied as an unconstrained algorithm for the multiplier 

methods. 

Since the scaled multiplier method is to be used in conjunction with the conjugate gradient, and the 

modified Newton's method is to be used along with the conjugate gradient and modified Newton's 
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method, these methods are briefly outlined here. The conjugate method uses the steepest direction 

together with the Hessian matrix of the functions to be optimized [5] and [6] and the Modified 

Newton’s method uses both the steepest direction as well as the inverse matrix of the function to be 

optimized [7]. 

The rest of the paper consists of the following sections: Definition of Terms, Multiplier Method, 

Modified Multiplier Method, Scaled Multiplier Method, Analysis of Data, Comment and Conclusions. 

1.1. Some Useful Terms 

Optimization: is the act of obtaining the best option under some given set of circumstances. 

Feasible Solution: This is the value of the variables that satisfies all set of given constraints. 

Feasible Region: This is the set of all feasible solutions. 

Optimal solution: This is the most favorable or best feasible solution. 

Definition 1.1: Local Minimum: A function  )(xf  has a local minimum at the value 
x  if there exists 

neighborhood of   
x  such that  values of x  in this neighborhood )(xf  is at least as large as )( xf

. It may simply be defined as the lowest function value in a finite neighborhood but not on 

neighborhood boundary. 

Definition 1.2: Strict Local Minimum: Let )(xf  be a function, if )(xf < )( xf  x   and 
 xx  

x   Subject to 

− xx
< , then  

x  is said to be strict (relative) local minimum point of f . 

Definition 1.3: Global Minimum: Function )(xf  has a global minimum at point 
x  if )()(  xfxf

. i.e. a function )( xf  x  is a global minimum if )( xf  has lowest minimum value. 

Definition 1.4: Optimal Value: This is the value of the objective function that corresponds to an 

optimal solution. 

2. The Main Results 

2.1 Multiplier and Lagrange Multiplier Methods 

We shall start with a brief overview of the multiplier method for the constrained problem presented in 
n :   

( ), ............................................................(1)

(

 

)

,

0

    

n

Whereis an m vector m n

Minimize x x E

subject to h x

h

 

−

= 

=

  

This method combines the penalty function approach with the Lagrange multiplier technique [8].  

The penalty function method focuses on minimizing:  

)()()()( xhxhxx Ti  += . 

As the scalar values 
i  increase, the limit of the minima for these problems as →i , if it exists, 

yields the solution (1). 

In contrast, the Lagrange multiplier method examines a function:  
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)()()( xhxx T += . 

Where the m-vector   is derived from simultaneously solving the system of equations 

0)()( =+  xhx T

xx  

                    ( ) 0 ............................................................(2)h x =  

It involves −n vector x and the −m vector .  

The multiplier method evaluates the function ( )i x  at each step: 

             

1
( ) ( ) ( ) ( ) ( )

2

i T iTx x h x h x h x   = + +
 and seeks to minimize it. 

After each iteration of minimization, the Lagrange multiplier vector, 
i  (as opposed to the penalty 

coefficient 


), is updated [11]. At the minimum point of )(xi , we arrive at: 

0)()()()( =++ ii

x

iiT

x

i

x xhxhxhx 
 

Rewriting this equation in the format of (2) leads to the updating relation: 

)(1 iii xh +=+

 

For numerical stability, one of the schemes suggested by [10] is to introduce a small positive scalar    

as follows: 

                )(1 iii xh +=+

,    0 < 1 …………………………….(3) 

The complete algorithm of the multiplier method is summarized thus: 

(i) Select a sufficiently large scalar 


 and an m-dimensional vector 
0  

(ii) Given 
i , minimizes ( )i x : 

)()()(
2

1
)()( xhxhxhxx iTTi  ++=

 

(iii) Let the optimal solution be 
ix ; the next estimate of λ is derived from relation (3).   

(iv) The minimum 
1+ix  associated with 

1+i  will serve as the next approximation to the constrained 

optimal solution. 

2.2 Modified Multiplier Method 

While the multiplier method has a clear advantage over the penalty function method due to its 

requirement for a much smaller penalty coefficient to achieve good results, it also has a significant 

drawback: many optimization problems must be solved before arriving at the solution for the 
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constrained problem (1). To address this issue, there is a need to develop an optimization procedure 

that can update the Lagrange multiplier vector as part of the function optimization process: 

)()()()()( xhxhxhxx TT  ++=  

According to [11], the algorithm of the method can be summarized as follows: 

(i) Choose the initial values x ,
0  along with appropriate positive scalars   and 1 . 

(ii) with 
ix  and 

i  known, the following calculations are performed. 

 iiiT

x

i

x

i

x

i xhxhxxg  ++== )()()()(
 

1

1

−

−− 







+−= i

TiTi

iiT
ii p

gg

gg
gp

 

(iii) The next estimate 
1+ix  is calculated using 

)(min)( 1 iii pxx 


+=+

 

(iv) Lastly, the Lagrange multipliers are updated using 

)(1 iii xh +=+

 

2.3 The Scaled Multiplier Method 

Although, the major drawback of the multiplier method is that many optimization problems have to 

be solved before the solution to the constrained problem was corrected by the method of modified 

multiplier [11], it was observed that both the multiplier method [10]and [12], and the modified 

multiplier method  using conjugate gradient method as an unconstrained search procedure, repeat a 

search path for several circles before locating a local optimal points (most especially for optimization 

problems whose both objective and constrained equation are Nonlinear), which generate much 

iterations and thereby waste computer time. According to [3] and [13], a good algorithm must not waste 

computer time. 

To create an algorithm that reduces the number of iterations, we applied the conjugate gradient and 

Newton's methods to nonlinear optimization problems. We utilized the conjugate gradient algorithm 

for the initial one-dimensional search and then employed the Newton's method for the subsequent 

iterations. This approach of combining the two unconstrained search methods was successfully tested 

on several problems. 

The complete algorithm of the scaled multiplier method can be summarized as follows:  

(i) Select a sufficiently large 


 and an m-dimensional vector 
0 . 

(ii) Minimize the function 

)()()(
2

1
)()( xhxhxhxx iTTi  ++=

 

(iii) Compute 
ix  
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(iv) Knowing 
i ,  

(v) Find 
  1

)(
−ixH , where H is the inverse Hessian matrix of the function to be optimized. 

(vi) Compute the next 
1+ix  

(vii) Let the optimal solution be 
1+ix , the next estimate of   is derived from the relation  

)(1 iii xh +=+

. 

(viii) If the optimal point is not reached, repeat step. 

2.4 Analysis of Data 

Having summarized the algorithm of the scaled multiplier method (S.M.M), we now present the 

applications of the method to nonlinear equality constrained problems 1P  and 2P  and the comparison 

are presented in table 1P  and 2P  respectively. We shall compare our results with the penalty function 

method (P.F.M) , the classical Lagrangian (C.L), the multiplier method (M.M) and the modified the 

multiplier method (M.M.M). 

Problem 1P  

3,2

01.

3222

00

2

22

==

=−−

++++

yx

yxtoSub

yxxyyxMinimize

 

Problem 2P  

1,1

02.

42322

00

2

22

==

=−+

++++

yx

yxtoSub

yxxyyxMinimize

 

*** ,, yx  are the values of  ,, yx  that gives the optimal value. 

 and
 are the optimal values while  

nand
 are the penalty factor and number of iterations 

respectively. 

Table 1: Optimization results table for Problem 1P  

Methods x  
y  

  n      

P.F.M -0.749858 -0.437482 - 98 130 -1.226236 

C.L.M -0749996 -0.437498 -0.249984 58 - -1.214637 

M.M -0.749954 -0.437352 -0.249296 12 10 -1.210937 
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Table 2: Optimization results table for Problem 2P  

Methods x  
y  

  n      

P.F.M 0.26714042 -2.220216 - 115 1000 2.001204 

C.L 0.26660841 -2.212161 -5.412884 93 - 1.989714 

M.M 0.266094 -2.220160 -2.482795 26 10 1.9079502 

 

3.  Conclusion 

Table 1 and Table 2 show that the proposed method exhibits high rate of convergence at a lesser number 

of iterations when compared to the penalty function method (P.F.M) and the Classical Lagrangian 

(C.L). Although the value of the penalty parameter needed by the method is the same with the 

multiplier method and the optimal points are almost the same with the multiplier method (M.M) but 

it converges with lesser number of iterations. 
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